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Abstract. The dielectric response of a quasi-one-dimensional electron system is 
studied by including fluctuation effects (in the polarizability) and by using a recently 
derived analytic form for the electron-electron interactions. General forms for the 
polarizability matrices both for the intra- and inter-subband cases are presented. 
The generalized polarizability is analytic over the whole region of the wavevectors 
artd rigorously retains the number neutrality. Various differences between the intra- 
and inter-subband cases for the polarizability and the dielectric matrix function are 
studied. The theory is used to study impurity screening and plasmon excitations in 
the presence of multi-subbands. We show that the screened impurity potential of a 
quasi-one-dimensional electron system is a well defined quantity and, in contrast to 
its twc- and threedimensional counterparts, it is finite at the origin and has stronger 
Friedel oscillations. An explanation is given for the experimental results of Hansen 
e t  a1 conceming the relationship between the inter-subband plasmon frequencies and 
the electron densities. 

1. Introduction 

Recently, there has been widespread interest in studying the physics of semiconductor 
quantum wires (which have a width of the order of lo3 A ,  comparable with the Fermi 
wavelength), where many novel effects with exciting possibilities for device applications 
have been detected [l-91. The electrons in these quantum wires are free to  move in one 
direction (say, along the z-axis) and are restricted in another (the y-axis) direction 
in some kind of quantized motion. Such semiconductor quantum wires are referred 
t o  as quasi-one-dimensional (QID) systems. With a view toward understanding more 
about these Q1D systems, we consider one of the most important properties namely 
the dielectric response function. 

A number of papers [3-91 have been published in which the dielectric function of 
Q1D systems has been studied. These studies show that the main difficulty in studying 
the dielectric response of QlD systems is that the T = 0 free-electron polarizability 
diverges a t  the wavevector q = 2k,, where IC, is the Fermi wavevector [3,4]. In addi- 
tion, the form of the Q1D Coulomb potential depends heavily on the confinement model 
used in the calculation and is generally evaluated numerically both for the intra- and 
inter-subband cases. At T = 0, in order to  obtain a better behaved Q1D polarizability, 
various attempts have been made to go beyond the free electron approximation by 
including other effects: 
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(1) the electron-electron interaction in the Hubbard-Singwi approach [3]; and 
(2) the electron-impurity effect in the relaxation time approximation [5,6]. 
The Hubbard-Singwi approach does not directly address the q = 26,  divergence, 

while the relaxation time approximation in modifying the free electron polarizability 
is known to be complicated by virtue of having to  retain the number neutrality of the 
electrons, i.e. the screening charge equals the impurity charge, a required property for 
any form of polarizability [ lo ,  111. 

In this paper, we present another form for the Q1D polarizability beyond the free 
electron approximation. The new generalized Q1D polarizability is analytic a t  q = 2kF 
and is rigorous in the sense that  it retains the number neutrality requirement in a 
natural way. It is obtained by including the physical effects of fluctuations in the pol- 
arizability which arise from the electron-electron, electron-phonon and the electron- 
impurity interactions (in a manner similar to  our previous generalization of the Lind- 
hard function in three dimensions [ll] and the Stern function in two dimensions [12]). 
In addition to  the study of the Q1D polarizability, we also apply a recently derived 
analytical form of the Q1D electron-electron interaction [13], which serves to  make the 
analytical study of the dielectric response function possible. 

To clarify the terminology, here we mention that the term ‘QID system’ is also 
widely used [14] for the study of metal filaments and conducting compounds, which 
have a width of the order of several atomic units, i.e. electrons in a Q1D lattice. There, 
the main interest appears to  be the many novel electronic behaviours related to the 
Q1D lattice such as the Peierls instability and charge density wave, and other phase- 
coherent problems such as superconductivity and weak localization. There exists a 
vast literature [14] concerning the dielectric response of the system under the influence 
of some of these physical processes, and very often the Tomonaga-Luttinger model and 
the bosonization method are used. The semiconductor quantum wires, which are the 
subject of this paper, are different from the metal filaments and conducting compounds 
in that the Q1D electrons in the semiconductor quantum wires are contained in a 
bulk-like lattice (negligible Peierls instability). In addition, the real sample used in 
the experiments is usually composed of many parallel semiconductor quantum wires 
(e.g. there are lo4 wires in the sample used in [l]) and the quantum interference 
effect is assumed to  be negligible due to  statistical averaging. In other words, we are 
concerned only with the normal state response behaviour of the Q1D electrons based 
on the usual Landau-Fermi liquid picture (which is different from the Tomonaga- 
Luttinger model [14]). For these reasons, no attempt will be made to relate the main 
results of this paper to the dielectric response of the metal filaments or conducting 
compounds. 

In section 2, we describe the model we used and we present a formal discussion 
of our results for the Q1D Coulomb matrix elements, the polarization function and 
the dielectric response function. In section 3, we evaluate the Q1D polarizability and 
obtain a general analytical form, which includes both the intra- and inter-subband 
cases. In section 4, we study the dielectric matrix function using the results of the 
previous sections. As an application, in section 5 we study the screened impurity 
potential and the plasmon excitations in the presence of many populated subbands. 
Our results are summarized and discussed in section 6. 

2. Model 

We consider a two-dimensional electron gas in a zero thickness zy-plane with a har- 
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monic confinement potential in the y-direction. 
In the harmonic confinement model [ 1 3 ] ,  the one electron wavefunction is 

where the delta-function indicates that  we neglect the z-direction motion of the elec- 
trons 

Hn(z) is the Hermite polynomial, b = ( h / m * ~ ~ ) l / ~ ,  m* is the electron effective mass 
and wo is the characteristic frequency of the harmonic potential. 

Our model Hamiltonian for this Q1D system is written in the centre-of-mass and 
relative electron coordinates, in a manner similar to the one we used in [ 1 5 ] ,  as 

P2 
- 2 M  

H - - - N e E - R  ( 2 . 3 b )  

+ ( 2 . 3 ~ )  
1 

HB = &knC:nCkn + V{N)(q)Ck++q,naCk'-q,n~Ck',nsCk,nl 
n k  k k ' q  

n I n ~ n s n 4  

where H,, H ,  and HI refer, respectively, to the Hamiltonians for the centre-of-mass, 
the heat-bath (relative electrons) and the interaction. Also P and R are the centre- 
of-mass momentum and position, c;kn and C k k ,  are the creation and annihilation 
operators for relative electrons with wavevector k = (1, kn),  In addition, v { N ) ( q )  is 
the Q1D Coulomb matrix having the general form [13]  

( 2 . 4 ~ )  

where N = n1 + n2 + 713 + 724, { N }  represents {n1n2, n3n4}, K is the dielectric constant 
of the static lattice and 

Here C j N 1  are some numbers which depends on s and { N } ,  the general form of which 
are presented in appendix A of [13]  and some of the values are given in table 1 of [ 1 3 ] .  
For later use we mention that,  for a two subband system, there are only four kinds of 
non-zero values for the Coulomb matrix ( 2 . 4 ) ,  which have the analytic forms 

Voo ,oo(q )  = -eb f41< 0 4  ( 1 b 2 q 2 )  ( 2 . 5 ~ )  

V,,,,,(q) = -eb 

e2  2 1 

e2  2 2 

K 

f4{(l + $b2q2 + i b 4 q 4 ) K o ( a b 2 q 2 )  - ab2q2(1  + $b2q2)I i ' , (ab2q2) }  
K 

( 2 . 5 b )  

( 2 . 5 ~ )  V00,11(q) = y e b 2 ~ 2 / 4 { K 0 ( ~ b 2 q 2 )  + i b 2 q 2 [ I i O ( i b 2 q 2 )  - I C , ( $ b 2 q 2 ) ] }  

VOl,Ol(~) = eb2q2/4Lb2q2(J(,( 4 $ b 2 q 2 )  - I(,( i b 2 q 2 ) }  ( 2 . 5 d )  

e2  
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where K,(z) is the nth order modified Bessel function of the second kind. The pres- 
ence of HI together with the electron-electron interaction in ( 2 . 3 ~ )  modifies the re- 
sponse of the electron gas. According to  the generalized quantum Langevin approach, 
these modifications can be considered by studying the fluctuation effects, which are 
represented by the diffusion constant of the centre-of-mass electrons [ll] 

1 
t“ 2t 

D = lim - ( P ( t ) ) .  

When the fluctuation effect is included, one obtains the Q1D polarizability, similar to  
the two- and three-dimensional cases [ l l ,  121 

where W is the width, L is the length of the Q1D system, f k  is the Fermi distribution 
function 

In addition C,,(ql) is a factor due to  the lateral quantization. In the harmonic model, 
which we adopt here, it is given by 

where t,(y) is defined in (2.2) and n’ = n + 1. 
The analytic form (2.4) of the Coulomb matrix elements and the generalized pol- 

arizability (2.7) of the Q1D system are the basic ingredients for the discussion of the 
dielectric response, which is the subject of the following sections. 

3. Polarizability at T = 0 

In this section we evaluate the Q1D polarizability (2.7) at  T = 0. When T = 0,  the 
Fermi distribution function is a step function f k k ,  = B(&F - E k k , ) ,  where is the 
Fermi energy, and the summation over k in (2.7) can be carried out easily by using 
the continuum approximation Ck 4 L/27r dk. After some algebra, we obtain from 
(2.7) the T = 0 polarizability with the fluctuation effects as 

. M  

where M denotes the top populated subband, n ,  n’ = n+l  are subband indices involved 
in the electron response and Cn(q,) is defined by (2.8). Also, the polarization matrix 
element xnn, in (3.1) is obtained explicitly as 

m* (bn - v-(/) - i+az)(bn, + v+(/) + i i a z )  
X n n ’ ( q , u )  = -;In (bn + v-(/) + i$az)(b,, - v,(/) - i i a z )  (3.2) 
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where the spin degeneracy has been taken into account, and 

a = 2 m * D / h  

k t n  = 2 m * ( c F  - nhwo)/h2 

b, = bkFn 

( k F n  = 0, if cF < nhwo) 

and 

( 3 . 3 )  

The  polarization matrix element ( 3 . 2 )  is the core of the Q l D  polarizability (3 .1) .  
In the following we study ( 3 . 2 )  in detail for the intra- and inter-subband cases. 

3.1. Intra-subband polarization matrix element 

The intra-subband polarization matrix element is defined by taking n = n' in ( 3 . 2 ) .  
In this ( 3 . 2 )  reduces t o  

m* 
.Irq 

(6, + f ~ ) ~  + a2x2 - (y/z)' - %ay 
( b ,  - fz)2 + (32x2 - (y/t)2 - %ay' Xnn(x, Y) = ---ln ( 3 . 5 )  

When n = 0 and a + 0, ( 3 . 5 )  reduces to  the special case of the one subband 
polarizability of the Q1D non-interacting electrons 

m* { (box + 52 1 2 2  ) - y2 
x"(z,y) = -- In - iaO(b,x + 4 2  - y)e(y - boa: + $2) 

'Irq (box - $ x ~ ) ~  - y2 

( 3 . 6 )  

We note that the real part of ( 3 . 6 )  is divergent a t  y = [box k fz21. In the work 
of Das Sarma and Lai, they eliminated the 2kF divergence of ( 3 . 6 )  by including both 
the thermal and the impurity collisional effects. Here we have avoided the divergence 
problem by including the fluctuation effects represented by the parameter a. The 
difference is that  ( 3 . 5 )  retains the conservation of the local electron number while 
incorporating the electron collisional effect into the polarization, a point first noted 
by Mermin in his study of the Lindhard function [lo]. In addition, ( 3 . 5 )  has more 
advantages: 

(i) only one parameter a is involved, which represents the inelastic electron- 
electron and electron-phonon interaction effects on the polarization; 

(ii) analytic forms of both the real and imaginary parts of the polarizability matrix 
elements can be deduced directly from ( 3 . 5 ) ,  which makes it very convenient for use 
in the study of the dielectric properties of Q i D  systems. 

In figure l ( a ) ,  we plot the static function -xoo(q) of ( 3 . 5 )  in units of m * / 2 x k F ,  
and we choose a = 0.1 and 0.01. We observe from the figure that the original q = 2kF 
divergence of xo(q) of ( 3 . 6 )  is eliminated because of the fluctuation effects represented 
by a, and the larger the value of a the broader the q = 2 k ~  peak. When n # 0, it is 
easy t o  see that  X,,(q) will have the same behaviour as x,, except that  now the peak 
is located a t  q = 2kF,.  This is illustrated in figure l(b), where we take a = 0.01 and 
n = 0 , 1 , 2 ,  to  plot Xnn(q) in units of m*/27rkFn.  Figure 1 shows that ,  in general, the 
intra-subband polarizability matrix has the following properties: 
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I 
1 

q / z K F  

I n=2 n - l  n .0  

Figure 1. Static intra-subband polarization matrix elements -xnn(g)  as a function 
of q / 2 k ~ :  ( U )  n = 0 for two broadening parametem a = 0.1 and 0.01; ( b )  a = 0.01 
for three different subband indices n = 0 , 1 , 2 .  

(i) in the q + 0 limit, it approaches a constant independent of the subband 

(ii) it peaks near q = 2 k ~ , ;  and 
(iii) i t  vanishes as q-' in the q 
The q --+ 0 expansion formula of the real part of (3.5) is useful for studying plasmon 

separation; 

CO limit. 

excitations. From (3.5) it is easy to  obtain 

3.2. Inter-subband polarization matrix element 

When n # n', (3.2) represents the inter-subband polarization matrix element. After 
some algebra, the real and imaginary part of (3.2) can be written respectively as 

m* 

2nq 
[ ( b ,  - v-(r))2 + y x 2 ] [ ( b , /  + v + ( l ) y  + $ 2 2 2 2 1  

ReXnnl(z ,g)  = --In ( 3 . 8 ~ )  
[ ( b ,  + v-(l))' + $a2x2][(b,, - v+(l))' + $u2z2] 

(3.8b) 

where the arguments are defined by (3.3) and (3.4), and O(x) is the step function. 
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First, i t  is clear that  ( 3 . 8 ~ )  and (3.8b) have the following symmetry properties 

Rexnn4q ,  -U) = ReXn+l(Q,U) (3.9a) 
Imx,,4q, -U) = - Imxn , , (q ,4 .  (3.9b) 

Equations ( 3 . 9 ~ )  and (3.96) in the static limit give 

R~x, , I (Q) = Rexnln(q) (3.  l o a )  

I m x n n 4 d  = ImXdn(Q)  = 0. (3.10b) 

We note that  the symmetry properties ( 3 . 9 ~ )  and (3.9b) for the polarization matrix 
elements xnn, are the necessary conditions for the Q1D polarizability (2.7) to  have 
Re x(q, -U)  = Re x(q, w )  and ImX(q, -U) = -1m x(q, w ) ,  which must be satisfied by 
any kind of response function. Also, we note that ( 3 . 1 0 ~ )  implies that  in studying 
the static behaviour we have only to  consider one of the X n n l ( q )  and x,(,.,(q). In the 
following, we first study the long wavelength limit behaviour of ( 3 . 8 ~ )  and then its 
static function x,,,(q). 

From a comparison of (3.8) and (3.5),  we see that the difference between xnn and 
x,,,, which is mainly represented by the term l / x  in ~ ~ ( 1 )  of (3.8), becomes significant 
a t  the long wavelength limit (x -+ 0). In other words, the inter-subband effect in the 
density response is most significant in the low q region. When x << y -  1, (3.8) reduces 
t o  

(3.11) 

Equation (3.9) shows that in the q + 0 limit, xnnl has a finite value, in contrast to 
X,,(q + 0 , w )  which vanishes (see (3.7)). This q --+ 0 lateral polarization is the source 
of the depolarization effect of the Q1D collective excitation, which we will further 
explore in section 5.2.  

The basic features of the inter-subband polarizability matrix are illustrated by 
figure 2, where we plot the static function -xol(q) in units of m*/2aICF, with a = 0.01 
and 0.1, and 6kF = 1.73 arid 2.24. It can be seen from the figure that the static 
inter-subband matrix has a similar shape to  that of x,,(q): 

(i) i t  approaches a finite value as q -+ 0; 
(ii) i t  peaks at  q = IC,, + I C F n r ;  
(iii) it vanishes as q-’ at  q --+ 00. 

The nature of the peak of x , , / ( q )  is similar to  that of the intra-subband pol- 
arizability matrix x,,/(q), except for a down shift (for n’ > n)  of the peak position 
from q = 2kF, for x,,(q) to  q = kF, +k,,, for x,,/(q). Also, both the peak value and 
width depends on the parameter a ,  and the peak becomes narrow when a decreases. 
In addition, the value of -xol(0) can be estimated from the general form deduced 
from (3.1 1) as 

- x,,,(q = O)/(m’/2~k,,) = 4b2kF,(kF, - k F n , ) / ( n ’  - n )  (3.12) 

which is in contrast to  the q = 0 value of the intra-subband polarizability matrix 
where we recall that  

- xnn(q  = O)/(m*/2akFn) = 4. 

For arbitrary nn’, from ( 3 . 8 ~ )  we expect that  xnnr(q) will keep the qualitative features 
of xol(q) as seen in figure 2. 
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Figure 2. Static inter-subband polarization matrix elements - x o l ( q )  (in units of 
n * / 2 ? r k ~ )  as a function of q / 2 k ~  for a = 0.01,o.l and bkF = 1 .73 ,2 .24 .  

4. Dielectric matrix function 

The dielectric response function of a Q1D system takes the form of a matrix. The 
generalized dielectric matrix function is given by [13,16] 

where the Coulomb matrix V,,,,,,,(q) is defined by (2.4) and xnn,(q,w) is the polar- 
ization function. In the random phase approximation (RPA), the Xnnt(q,w) in (4.1) is 
replaced by the non-interacting polarization matrix &/(q ,  U ) ,  i.e. (3.2) with a + 0,  
and then (4.1) has the q = 2k, divergence problem. Here we go beyond the RPA by 
using the generalized polarization matrix (3.2),  which includes the modifications to 
the response of the Q1D system due to the fluctuation effects. 

First, we observe directly that the matrix elements in (4.1) can be regrouped into 
two decoupled (which we shall call the even and odd) blocks. The even block contains 
all those matrix elements with n + n’ and m + m’ as even numbers. In other words, 
the even block has all the M intra-subband terms as its diagonal part plus those inter- 
subband terms with even number separations for the related subbands, and the odd 
block has all the inter-subband terms with odd number separations for the related 
subbands. Also, the dimensionality of the even and odd blocks are the same except 
that when M is odd, the even block is one dimension larger than that of the odd 
block. 

Next, we study the static dielectric matrix function cn,,,,,,(q), the w = 0 expres- 
sion of (4.1). Using (2.4) and (3.8a), from (4.1) we obtain 
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where a; = Kti/m*e2, the value of which depends on the material. In this paper we 
analyse the GaAs system, and take the ratio b / a i  = 3.0 from the experimental data. 

There are two kinds of the diagonal elements of (4.2), the intra-subband ( n  = n’ = 
m = m’) and the inter-subband ( n  = m, n’ = m’) cases. The intra-subband expression 
of (4.2) is 

which is obtained directly from (4.2) by definition and nn denotes {nn,nn}.  The  
intra-subband dielectric matrix function (4.3) has the following features: 

(i) it diverges logarithmically a t  q -+ 0 (due t o  the logarithmic divergence of the 
intra-subband Coulomb matrix a t  q -+ 0 as can be observed from (2.4)); 

(ii) i t  tends to  one a t  q -+ CO; and 
(iii) i t  has a turning point a t  q = 2kF, where the value of c ; i ( q )  changes dramati- 

cally. 
These features are illustrated by figure 3( a) ,  where the dependence of the fluctu- 

ation parameter a is studied, and figure 3( b ) ,  where the dependence on the subband 
indices is studied. 

101 I 

- n = O  
n = l  
n = 2  

----___ 
- - _  

I 

OO 1 

Figure 3. Inverse of the static intra-subband dielectric matrix function c,,(q) as a 
function of q / 2 k ~ :  ( a )  n = 0 for two broadening parameters a = 0.1 and 0.01; (6) 
a = 0.01 for three different subband indices n = 0,1,2. 
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The diagonal elements cnn,(q) E cnn, ,nnl(q)  of the static inter-subband dielectric 
matrix (4.2), can be worked out correspondingly from (4.2).  From (2.4) and (3.10a), 
it is easy to see that 

cnn/(q) = cn,n(q),  (4.4) 

Thus we have to  study only one of the cnn,(q) and cnIn(q). In figure 4, we plot c i f ( q )  
at a = 0.01, and 0.1 and bkF = 1.73 and 2.24. Also, from (2.4),  (3.12) and (4.1), we 
obtain the q = 0 value of the diagonal inter-subband dielectric matrix 

Using the fact E, , , , , (q  = 0) = 1, we have col = 1 + 2b2(kF - kFl)/sa+B. 

(4.5) 

Figure 4. Inverse of the static inter-subband dielectric matrix function €01 ( q )  as a 
function of x = q/'LkF for 4 = 0.01,O.l and bkF = 1.73,2.24. 

5 .  Applications 

In this section we apply the formalism developed in the previous sections, the general- 
ized Q1D polarizability, the analytic form of the Q1D Coulomb matrix elements, and the 
dielectric matrix elements, to study two of the most fundamental static and dynamic 
dielectric response phenomena, i.e. the impurity screening and plasmon excitations 
for the Q1D electron system. 

5.1.  Impurity screening 

In the study of the multi-subband transport of a two-dimensional electron gas, a formal 
theory for the screened impurity potential has been developed [16], which involves the 
evaluation of the inverse of the dielectric matrix function. Due to the complexity of 
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the dielectric matrix, the actual evaluation of the screened potential has never been 
carried out explicitly. On the other hand, it is clear to  see that the formal theory of 
the screened impurity potential of the multi-subband two-dimensional system is also 
applicable to  the Q1D system. Here we apply the relatively simple form of the Q1D 
dielectric matrix function obtained in the previous sections to  calculate explicitly the 
screened potential by means of the existing formal theory. 

We start  from the formula for the Fourier transform of the screened impurity 
potential [16] 

where E - l ( q )  is the inverse of the dielectric matrix function (4.1),  and U I m ( q )  is the 
one-dimensional Fourier transform of the matrix element of the unscreened impurity 
potential, given explicitly by (with z and y now denoting the Cartesian coordinates) 

where Z is the number of charges of the impurity and K ,  I<, and E ,  are the same as in 
(2.4). Similar to  (2.4),  equation (5.2) can be evaluated analytically. For the present 
purpose, we give the results of (5.2) for the two subband case 

(5.3a) 

(5.3b) 

UOl(d = U,o(d  = 0. (5.3c) 

We note that ( 5 . 3 ~ )  is true for any U I m ( q )  with ( I  + m) an odd number. Recalling 
our earlier comments that the matrix ~ ( q )  is decoupled into even and odd blocks, 
the vanishing of U I m ( q )  when (/ + m) is an odd number implies that  only the even 
block of the matrix c ( q )  contributes to the screened potential (5.1). From (5.1), i t  is 
straightforward to  obtain the total screened-impurity potential 

(5.4a) 

with 

where xo = q / 2 k ~ ,  ro = 2kFz and (/ + m) are even numbers. In the following, 
we evaluate (5.4) for a &ID system having a total of two subbands with one or two 
populated subbands. 

When the system is populated with electrons in a single subband, there is only 
one term in (5.4), i.e. 

00 

dzo cos( 2 0 To 1 Gal( 0 ) U00 ( 2 0  1 / (e2 (5.5) 
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We recall that for the high (two- and three-) dimenbional systems, the screened po- 
tential has similar expressions to  (5.5), with the replacement of dzo,Uao and coo 
by their counterparts defined in higher dimensions. There, the screened poten- 
tial diverges at  ra = 0, and has the Friedel oscillation behaviour at  large ra with 
U ~ , ( r 0  + CO) - s inro / r t ,  d = 2 , 3  for two and three dimensions. Equation (5.5) is 
different from the higher dimension screened potential in the following sense. First, 
at large ro one obtains from (4.3) and (5.5) 

1 

PO 
U:o(ro) - - sin 

which is a Friedel oscillation decaying much slower than in the higher dimensional 
case. Secondly, (5.5) is practically finite at  ra = 0. This is because the integral in 
(5.5) is one-dimensional, and the integrand in (5.5) equals $wkFah at q -+ 0 and 
goes as q - l  at q + 03, which are easily deduced from ( 5 . 3 ~ )  and (4.3). Thus, the 
screened potential (5.5) is a well defined quantity and has strong Friedel oscillation 
behaviour. In figure 5 ,  we plot the screened potential (5.5) at blah = 3.0, a = 0.01 
and two different 12, values of bk,  = 1 .OO and 1.34, where prominent Friedel oscillation 
is clearly demonstrated. We observe from the inset figure in figure 5 that when the 
fluctuation effect (represented by the parameter a )  increases, the period of the Friedel 
oscillation increases and the amplitude decreases, which is similar to  what was found 
in two-dimensional and three-dimensional systems. We note that the dependence on a 
of the screened potential (5.5) is weaker than that of the screened density, as only the 
denominator coo in (5.5) has  a dependence on a at  a relatively large value of q/2kF. 

0=001 b k F = l . O O  - 
bk, = 1.34 ----..__ 

bk,z1.00 - - - 1 0'01 

r, = Z K ,  x 
Figure 5. Screened impurity potential U'(TO)  (in units of Z e Z k F / s )  against TO for 
a one subband QlD system for different values of the fluctuation parameter a and 
Fermi momentum k F  , 

When the two subband system is populated for both subbands, there are two terms 
in (5.4a), which is 
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where 

Here 

and the ci.,,,,,(zO) are defined by (4.2). In figure 6 ,  we plot the numerical results of 
(5.7) at b/aE, = 3.0,  a = 0.01 and two 12, values of bk, = 1.48 and 1.95. The figure 
shows that the screened potential of a populated two subband system keeps the basic 
properties of a single populated subband system: the Us(ro  = 0) is finite and the 
Friedel oscillation at  large ro is relatively strong. 

Figure 6. Screened impurity potential  TO) (in units of Z e 2 k p / K )  against ro for 
a two subband Q ~ J J  system for different values of the fluctuation parameter a and 
Fermi momentum kp. 

When M is larger than two, the evaluation of (5.4) is much more tedious than the 

(i) the calculation of €-I(.) is more complicated; and 
(ii) the non-vanishing off-diagonal term U,, ( q )  appears in (5.4b). 
Nevertheless, in principle, the evaluation of the screened potential (5.4) in our 

formalism can be carried out for the Q1D system with arbitrary number of subbands. 

M = 2 case. This is because: 
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6. Inter-subband plasmon excitation 

The plasmon spectrum for a &ID system is determined by the condition 

det(cij,,,) = 0 i , j ,  I, m = 0 , 1 , 2 , .  . . , M - 1 (5.9) 

which has a dimension of M 2  x M 2 .  It is well known that for the ordinary plasmon 
in the low dimensional case, electrons in the same energy band (intra-band) oscillate 
collectively with a frequency w - q1l2, qI lnqI1/’ respectively for two-dimensional and 
one-dimensional in the long wavelength limit. In a Q1D system many subbands are 
populated. As a result, the inter-subband plasmon for electron densities appears. 
Previously [13], we have used the Coulomb matrix (2.4) and the free electron pol- 
arizability (3.6), to  solve (5.9). Our main conclusions concerning the spectrum of the 
inter-subband plasmon with a single subband separation are: 

(i) it is relevant only to  the odd sub-block of the dielectric matrix (4.1); 
(ii) there are M different modes composing the collective excitations of a system 

with M populated modes; and 
(iii) the maximum frequency w: of these M modes is proportional to  the subband 

separation wo and is determined by the largest value of the differences between the 
Fermi momenta of the electrons in the consecutive subbands. 

Explicitly, when the top subband is significantly populated, it has the value [13] 

(5.10) 

where kF,M-l  is defined in (3.3). However, kF,M-l  is replaced by kFtM-2 - k F , M - l  
when the top subband is almwt empty. Here we use (5.10) to discuss the relationship 
between the inter-subband plasmon frequency and the electron density, which is mo- 
tivated by the following unexplained experimental results. In their experiments [l, 21, 
Hansen et a1 found that when the electron density decreases the inter-subband plas- 
mon frequency increases. Their result is displayed by figure 7, where we are con- 
cerned only with the QID behaviour, the left part of the figure. That  collective effects 
are most important a t  the lowest electron density seems surprising. Because such 
collective effects, which in the simplest approximation are associated with clssical  
depolarization, are naively expected to  become less important with decreasing elec- 
tron density and to  vanish as wp N n i / 2 .  This remains unexplained in the recent 
theoretical studies using the ‘few subband approximation’ [8,9]. On the other hand, 
our result (5.10) does not have the restriction of few subbands and the density de- 
pendence of w: can be easily calculated once the quantities appeared in (5.10) are 
given. Using the data  given or extracted from table 1 of 121, for wo,  b ,  U:, and kFM 
a t  three different densities N , ,  = 6.7,6.1,3.7(106 cm-’) (corresponding to the gate 
voltage Vg = -500, -550, -600 (mV) in figure 7), we have evaluated w: of (5.10) as 
a function of electron density. The result is presented in figure 7 by open circles. As 
can be seen from the figure, our theoretical results are very consistent with the ex- 
perimental data: when the Fermi energy decreases (so does the electron density) the 
inter-subband plasmon frequency increases. According to (5. lo),  the inter-subband 
plasmon w r  frequency depends on the subband separation wo and the maximum 
value of the differences between the Fermi momentum of the consecutive subbands, 
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the larger the wo and the kF,M- l ,  the larger w r  will be. When the magnitude of the 
gate voltage of the QID system increases (as in the experiments of [1,2]), the strength 
of the harmonic confinement potential increases, and an increase of subband separa- 
tion wo follows. At the same time, if wo becomes larger, electrons in the top subband 
can have higher Fermi momentum than before since by definition the maximum value 
of kFM equals d=/h. It is the combined effect of the increase of wo and k F M  a t  
the decreasing gate voltage that  determines the increasing of the U:, which explains 
the experimental finding of [l, 21. 

I 

G a A s  w i re  
8 

e 
e 

0 c 1 
-600 -400 -200 0 

V q k "  

Figure 7. Resonance energies of the infrared excitations: A comparison between the 
theoretical results of t l w F  (w," is the inter-subband plasmon frequency) as obtained 
by (5.10) (open circle) and the experimental data (dots) of [2] V, is the gate voltage. 
The parameters used in the calculation are obtained from table I of [2]. 

Finally we note that the quantitative agreement between the theoretical values 

(i) the interactions between the inter-subband plasma; 
(ii) finite q contributions to  (5.10); and 
(iii) slightly larger values of wo than the experimentally given values. 

and the experimental results as seen in figure 7 can be improved if we consider: 

7. Summary 

In this paper, we have studied the dielectric response of a &ID electron system in the 
harmonic confinement potential model. 

The generalized QID polarizability (2.7) is derived by extending the generalization 
of the Lindhard function to include the fluctuation. At T = 0, we obtain analytical 
expressions for the intra- and inter-subband polarizability matrix element (3.5) and 
(3.8), respectively. Equations (2.7), (3.5) and (3.8) rigorously obey the charge neu- 
trality requirement of the density response function, and are free of the divergence 
problem originally present in the free electron polarizability. Detailed study of the 
static function shows that the intra-subband polarizability (3.5) has a q dependence 
similar t o  that of the two-dimensional and three-dimensional polarizabilities, while 
the inter-subband polarizability (3.8) obeys the symmetry properties (3.9) and (3.10). 
The inter-subband effect in the polarizability is found to  be most significant in the 
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low q region. In particular, x,,,,,(q + 0 , w )  has a finite value of (3.11) in contrast to 
xn,,(q -+ 0 , w )  which vanishes. 

By using a recently derived analytical form (2.4) of the electron-electron inter- 
actions of Q1D system in the harmonic confinement potential model, we obtain the 
analytic QlD dielectric matrix function (4.2). The dependence of the fluctuation pa- 
rameter a and the electron density (through the Fermi momentum) of the dielectric 
matrix function both for the intra- and inter-subband cases have been studied. Again, 
the q = 0 value of the inter-subband dielectric matrix function has a finite value in con- 
trast to that of the intra-subband case where the dielectric matrix function diverges. 
Also, the dielectric matrix in the harmonic confinement potential model is found to 
be decoupled into two uncorrelated subblocks, the even and odd block, containing 
different physics. The even block of the dielectric matrix determines the properties 
of the impurity screening, while the odd block is responsible for the inter-subband 
plasmon excitation with a single subband separation. 

The QlD dielectric response theory is applied to study impurity screening and the 
inter-subband excitations in the presence of multi-subbands. We have presented a 
general expression for the total screened impurity potential (5.4) of the Q1D system, 
and studied it explicitly for a two subband system with either one or both subbands 
populated. We found that the total screened-impurity potential at  the origin is a well 
defined quantity in contrast to the two-dimensional and three-dimensional case where 
it diverges. In addition the Friedel oscillation at large r,, is much stronger than for the 
two-dimensional and three-dimensional cases. This implies that the Friedel oscilla- 
tion of Q1D electron system, compared to the two-dimensional and three-dimensional 
systems, should be more easily detectable by experiments. In applying our formalism 
to the study of the inter-subband plasmon, we find that the plasmon frequency de- 
pends on the subband separation and the maximum value of the differences between 
the Fermi momentum of the consecutive subands. When the subband separation in- 
creases due to the strengthening of the confinement potential, the Fermi momentum 
of the top populated subbands also increases. Thus, when the magnitude of the gate 
voltage is increased to  strengthen the confinement potential as was done in the ex- 
periments of [1,2], we find an increase in the inter-subband plasmon frequency. Our 
theoretical result (5.10) is in good agreement with the experimental data of [Z]. 
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